Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.10.25.23297530

ABSTRACT

While SARS-CoV-2 vaccines have shown strong efficacy, their suboptimal uptake combined with the continued emergence of new viral variants raises concerns about the ongoing and future public health impact of COVID-19. We investigated viral and host factors, including vaccination status, that were associated with SARS-CoV-2 disease severity in a setting with low vaccination rates. We analyzed clinical and demographic data from 1,957 individuals in the state of Georgia, USA, coupled with viral genome sequencing from 1,185 samples. We found no difference in disease severity between individuals infected with Delta and Omicron variants among the participants in this study, after controlling for other factors, and we found no specific mutations associated with disease severity. Compared to those who were unvaccinated, vaccinated individuals experienced less severe SARS-CoV-2 disease, and the effect was similar for both variants. Vaccination within 270 days before infection was associated with decreased odds of moderate and severe outcomes, with the strongest association observed at 91-270 days post-vaccination. Older age and underlying health conditions, especially immunosuppression and renal disease, were associated with increased disease severity. Overall, this study provides insights into the impact of vaccination status, variants/mutations, and clinical factors on disease severity in SARS-CoV-2 infection when vaccination rates are low. Understanding these associations will help refine and reinforce messaging around the crucial importance of vaccination in mitigating the severity of SARS-CoV-2 disease.


Subject(s)
COVID-19 , Kidney Diseases , Severe Acute Respiratory Syndrome
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.12.22273675

ABSTRACT

Background: SARSCoV2 mutations conferring escape from neutralizing antibodies can arise in immunocompromised patients with prolonged infection, but the conditions that facilitate immune escape are still not fully understood. Methods: We characterized endogenous immune responses, within host SARSCoV2 evolution, and autologous neutralization of the viral variants that arose in five immunocompromised patients with prolonged infection and B cell deficiencies. Results: In two patients treated with the monoclonal antibody bamlanivimab, viral resistance to autologous serum arose early and persisted for several months, accompanied by ongoing evolution in the spike protein. These patients exhibited deficiencies in both T and B cell arms, and one patient succumbed to disease. In contrast, we did not observe spike mutations in immunologically important regions in patients who did not receive exogenous antibodies or who received convalescent plasma and had intact T cell responses to SARSCoV2. Conclusions: Our results underscore the potential importance of multiple factors the absence of an effective endogenous immune response, persistent virus replication, and selective pressure such as single-agent bamlanivimab in promoting the emergence of SARS-CoV-2 mutations associated with immune evasion. These findings highlight the need for larger clinical studies in immunocompromised populations to better understand the ramifications of different therapies. Our results also confirm that patients with B cell deficiencies can elicit effector T cells and may suggest an important role for T cells in controlling infection, which is relevant to vaccines and therapeutics.


Subject(s)
Lymphoma, B-Cell , Pregnancy, Prolonged
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.03.442357

ABSTRACT

The emergence of SARS-CoV-2 has resulted in a worldwide pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of COVID-19 disease have been hampered by the lack of robust mouse models. To overcome this barrier, we utilized a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2. Incorporating key mutations found in SARSCoV-2 variants, this model recapitulates critical elements of human infection including viral replication in the lung, immune cell infiltration, and significant in vivo disease. Importantly, mouse-adaptation of SARS-CoV-2 does not impair replication in human airway cells and maintains antigenicity similar to human SARS-CoV-2 strains. Utilizing this model, we demonstrate that SARS-CoV-2 infected mice are protected from lethal challenge with the original SARS-CoV, suggesting immunity from heterologous CoV strains. Together, the results highlight the utility of this mouse model for further study of SARS CoV-2 infection and disease.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.10.434828

ABSTRACT

High-throughput genomics of SARS-CoV-2 is essential to characterize virus evolution and to identify adaptations that affect pathogenicity or transmission. While single-nucleotide variations (SNVs) are commonly considered as driving virus adaption, RNA recombination events that delete or insert nucleic acid sequences are also critical. Whole genome targeting sequencing of SARS-CoV-2 is typically achieved using pairs of primers to generate cDNA amplicons suitable for Next-Generation Sequencing (NGS). However, paired-primer approaches impose constraints on where primers can be designed, how many amplicons are synthesized and requires multiple PCR reactions with non-overlapping primer pools. This imparts sensitivity to underlying SNVs and fails to resolve RNA recombination junctions that are not flanked by primer pairs. To address these limitations, we have designed an approach called 'Tiled-ClickSeq'. Tiled-ClickSeq uses hundreds of tiled-primers spaced evenly along the virus genome in a single reverse-transcription reaction. The other end of the cDNA amplicon is generated by azido-nucleotides that stochastically terminate cDNA synthesis, obviating the need for a paired-primer. A sequencing adaptor containing a Unique Molecular Identifier (UMI) is appended using click-chemistry and a PCR reaction using Illumina adaptors generates a final NGS library. Tiled-ClickSeq provides complete genome coverage, including the 5'UTR, at high depth and specificity to virus on both Illumina and Nanopore NGS platforms. Here, we analyze multiple SARS-CoV-2 isolates and simultaneously characterize minority variants, sub-genomic mRNAs (sgmRNAs), structural variants (SVs) and D-RNAs. Tiled-ClickSeq therefore provides a convenient and robust platform for SARS-CoV-2 genomics that captures the full range of RNA species in a single, simple assay.

SELECTION OF CITATIONS
SEARCH DETAIL